

0

Test project in Marushka
environment

 Test Project in MarushkaDesign environment

 - 1 –

CONTENTS

1 THE GUIDE TO TEST PROJECT IN MARUSHKADESIGN 2

1.1 THE OBJECTIVE OF TEST PROJECT .. 2
1.2 THE FILES OF TEST PROJECT .. 2
1.3 OPENING THE CREATED PROJECT ... 2

2 DATA STRUCTURE AND A PROJECT COMPOSITION 7

2.1 DESCRIPTION OF THE DATA MODEL OF WATER DISTRIBUTION NETWORK ... 7

3 CREATION OF DATA STRUCTURE IN SQLITE.. 8

3.1 DATABASE CREATION .. 8
3.2 CONSTITUTIVE SCRIPTS OF DATABASE TABLES .. 8
3.2.1 Graphical Tables ... 9
3.2.2 Table of Documents .. 12

4 TEACHING MARUSHKA TO READ AND WRITE ...13

4.1 CONNECTING DATA SOURCES .. 13
4.2 IMPORTING DATA FROM ESRI SHAPE FILES INTO SQLITE ... 15
4.3 DISPLAYING DATA IN MARUSHKADESIGN FROM DATABASE DATA STORE 18
4.3.1 Displaying of Line Elements ... 19

5 DISPLAYING DATA IN LOCAL WEB SERVER ..22

5.1 THE CREATION OF PUBLISH LAYER .. 22

6 CHANGING THE SYMBOLOGY OF DISPLAYED DATA - COMPLETION ..24

6.1 DEBUG CONSOLE .. 25
6.2 LAST MODIFICATIONS IN THE BASIC DISPLAY OF DATA .. 25

7 INTERACTIVE MARUSHKA ..29

7.1 CREATING FIRST INFORMATION QUERY .. 29
7.2 INFORMATION QUERY AT A CELL .. 31

8 MARUSHKA ADJUSTING THE DATA ..33

8.1 CUSTOMER EDITING .. 33
8.2 EDITING CONNECTION (LINE) ... 34
8.2.1 Creating a Static Code List ... 35
8.2.2 Limitations of the Editing Query to a Subset of Elements .. 35
8.2.3 Testing the Resulting Editing Query ... 35

9 TEACHING MARUSHKA TO DRAW ...37

9.1 CREATING DRAW QUERY – LINE OBJECT ... 37
9.2 CREATING AN ETALON ITEM ... 37
9.3 TESTING DRAW QUERY AND A WEAKNESS IDENTIFICATION.. 38
9.3.1 Error Correction .. 38
9.4 CREATING DRAW QUERY WITH ATTRIBUTES ... 38
9.4.1 Drawing query ... 38
9.4.2 Etalon Item .. 39
9.4.3 Form Layer ... 39

10 CUNNING MARUSHKA ...40

10.1 CREATING A QUERY FOR DELETING THE ELEMENT .. 40

11 MARUSHKA SEEKS AND FINDS ...41

11.1 CREATING A LOCALIZATION QUERY .. 41
11.2 CREATING A LIST OF VALUES ... 41

 Test Project in MarushkaDesign environment

 - 2 –

11.3 TESTING LOCALIZATION QUERY ... 42

12 MARUSHKA – THE DOCUMENTARIAN ...44

12.1 CREATING A BINARY QUERY .. 44
12.2 CREATING A QUERY FOR DOCUMENT MANAGEMENT ... 44

13 THE LEGEND IN MARUSHKA ..46

13.1 PREPARATION OF CELL LIBRARIES ... 46
13.2 CREATING A STATIC LEGEND ... 50
13.3 DYNAMIC LEGEND AND THEMATIZATION ... 52
13.3.1 Thematization Creation... 52
13.3.2 Creating Dynamic Legend .. 53

14 TEACHING MARUSHKA TO SING AND DANCE ...55

14.1 SUGGESTIONS FOR THE INDIVIDUAL EXERCISES .. 55

 Test Project in MarushkaDesign environment

 - 2 –

1 The Guide to Test Project in MarushkaDesign

1.1 The Objective of Test Project

The aim of the test project in MarushkaDesign is demonstration of functionality and options that
MarushkaDesign offers. In the test project we will demonstrate step by step how to create a fully
functional project of map composition and how to create Web map publication from available data. The
result will be an interactive web composition in Marushka environment, which will include basic vicinity
map that will allow basic viewing, inserting and editing of database data. The Web Marushka in this
example will be able to display information about elements, will be able to localize them, draw new
graphical elements or erase user-drawn elements from the data store. For the individual group of
elements is displayed the legend, there is of course an option to print to PDF or PNG file or by printer.

The main data store will be stored in SQLite environment, for the fulfillment of which will serve us
drawings of ESRI shape files of fictional water network data, which was drawn over the real cadastral
map of district Pardubice – Pardubičky. Database environment of SQLite assumes slightly advanced
user knowledge of SQL.

"Sharp projects" from this test can differ – for example, using the main source Oracle database
and vector data in WKB format, it is not necessary to deal with complications related to limitations of
ESRI shape files, for which user need to cope with problems associated with e.g. cells. The existing
GIS projects have available cell libraries, user styles libraries, etc. and the user does not have to deal
with them no more. The basic principles, however, are in ESRI shape files, that most users are familiar
with, well explicable.

The objective of this tutorial is not to create a detailed project description of MarushkaDesign
environment, but to provide only the basic, yet the widest range of options that MarushkaDesign
offers. To make the complex picture of functions and work in MarushkaDesign environment you can
read the manual, which is included in the installation package of MarushkaDesign.

1.2 The Files of Test Project

Besides the already created main file project.xml and database file test_project.db3

are in the Tutorial folder two other folders: SHP and Files. Files located in these folders will be used for
creating the project itself. In the folder SHP are ESRI shape file sources and in folder Files are mainly

two xml files – Cells_EN.xml – library of vector cells needed to view the cells of the items stored in

the shape files and NewWMS.xml – the sub-project containing merged layers from cadastral map from

WMS ČÚZK source. There are also included png files with an underscore at the beginning (to serve as
raster cells to create a legend), gif files starting with "rc_" – also raster legend cells and file
connection.jpg, which can be used as sample image when working with documents. Ultimately, it is
SQL_Create.sql file that contain the basic script necessary to create needed database tables.

1.3 Opening the Created Project

Unzip the package into C:\MarushkaExamples\Tutorial\, after starting MarushkaDesign (in
Windows Vista and higher is recommended to set MarushkaDesign.exe "run as administrator" so that
log entries will be saved into Program Files folder) open the project –
‘C:\MarushkaExamples\Tutorial\project.xml‘ file. In an opened project, you can try for yourself the
features that were created in this project and which we will try to create in the MarushkaDesign
environment.

 Test Project in MarushkaDesign environment

 - 3 –

 Opening the project:

 From MarushkaExamples\Tutorial folder open the file project.xml:

After opening the project, all the data stored within it will be retrieved. All the Data sources
contained in the project will appear. For immediate view of the contained data is recommended to
follow next procedure:

 In Data sources select from source SQLite layer "W_PIPING pipeline", which is after
clicking the left mouse button highlighted, and right-click will display context menu, from
which choose "Data – Load all".

 Test Project in MarushkaDesign environment

 - 4 –

Marushka will be working for us for several moments and it will display all the elements, stored in
the form layer W_PIPING pipeline. In the case that you do not see any element, Marushka did display
data outside the visible area of this map window.

 Displaying of all the data in the map window is executed by clicking the left mouse button
on the icon highlighted in the following picture and we will get the appropriate cut-out
data:

Thanks to such a defined map window cut-out the user can display data in a local web server in
MarushkaDesign environment.

 Launch the Local WEB server by clicking icon showed in the picture below (from toolbar
Layers and mapsurfaces)

 After launching the Local WEB server we will get the following picture:

 Test Project in MarushkaDesign environment

 - 5 –

The next figure shows the whole MarushkaDesign environment with opened project and a local
WEB server preview:

 Test Project in MarushkaDesign environment

 - 6 –

And now it is just up to user how much he will play with the existing project and how he will
examine existing options. In the following chapters you will be showed how to create this project by
yourself.

 Test Project in MarushkaDesign environment

 - 7 –

2 Data Structure and a Project Composition

The main carriers of data structure of the project are:

1) Simplified fictitious data of water distribution network drawn over the real cadastral map (they
will be imported from source ESRI shape files into SQLite data store).

2) Public WMS service from ČÚZK (Czech Office for Surveying, Mapping and Cadastre) allowing
displaying cadastral map under the water supply network vector data.

2.1 Description of the Data Model of Water Distribution Network

Water distribution network in our case consists of linear route objects of water supply network
(pipelines and connections) defining the course of our engineering networks. Another vector data, that
occurs on the water supply route are cell of devices. They represent fictitious nodes in crossing
multiple pipelines or pipelines with connection, hydrants and particularly connection terminations,
which are in our case also bearers of non-graphical data about the customer. In the resulting map
publication are not displayed connection closures (eventually pipeline closures).

 Test Project in MarushkaDesign environment

 - 8 –

3 Creation of Data Structure in SQLite

As a source data were used ESRI shape files. Working with data stored in such a data store in
WEB publication would be considerably limited and it would not be possible to use the database
properties of individual elements, so it is convenient to convert the source data into the database
structure. For simplicity, effectiveness and because of this solution is available to every user, was
chosen SQLite database environment, which is fully open. The database structure of SQLite
environment is of file character, so it is very easily transferable between different computer stations.
For managing the database entities was chose database client SQLite Expert Personal
(http://www.sqliteexpert.com/download.html). It is a fully sufficient SQL manager, working with it is
fairly intuitive, but for work outside the scope of this tutorial it requires knowledge of SQL.

3.1 Database Creation

The new database is in the client SQLite Expert Personal created using the menu File – New

database. A dialog box will display with properties of the database. Using the button, select the
path and name for the new database file and keep other properties unchanged.

3.2 Constitutive Scripts of Database Tables

Each graphic table consists of several mandatory columns and there must be also a virtual table
for spatial indexing. All the tables have a similar structure. They must contain the columns ID, GEOM,
XMIN, YMIN, XMAX, YMAX. Additional columns in created tables were created for the needs of our
project. The importance of the tables that are not mandatory in terms of the structure of any GIS
project will be explained later in the actual configuration of the project.

The only non-graphical table that we use in our case is the table "demo_doc". This is a table of

documents, which will store any files belonging to specific graphic elements.

Constitutive scripts to all necessary tables can be found in the file SQL_Create.sql which can

be found in the package Tutorial Files folder. It is sufficient to copy the text contained in it to clipboard,
paste it into SQLite expert manager and run the Execute SQL button.

http://www.sqliteexpert.com/download.html

 Test Project in MarushkaDesign environment

 - 9 –

3.2.1 Graphical Tables

Hydrant

CREATE TABLE "W_HYDRANT" ("id" INTEGER PRIMARY KEY NOT NULL , "geom" BLOB

, "xmin" FLOAT NOT NULL , "ymin" FLOAT NOT NULL , "xmax"FLOAT NOT NULL ,

"ymax" FLOAT NOT NULL, "rc" VARCHAR(255), `angle` float);

CREATE TRIGGER [INSERT_ITEM_W_HYDRANT]

AFTER INSERT

ON [W_HYDRANT]

FOR EACH ROW

BEGIN

 INSERT INTO W_HYDRANTSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE TRIGGER [DELETE_ITEM_W_HYDRANT]

AFTER DELETE

ON [W_HYDRANT]

FOR EACH ROW

BEGIN

delete from W_HYDRANTSPATINDEX where old.id=W_HYDRANTSPATINDEX.id;

END;

CREATE TRIGGER [UPDATE_ITEM_W_HYDRANT]

AFTER UPDATE OF [geom], [xmin], [ymin], [xmax], [ymax]

ON [W_HYDRANT]

FOR EACH ROW

BEGIN

 delete from W_HYDRANTSPATINDEX where old.id=W_HYDRANTSPATINDEX.id;

 INSERT INTO W_HYDRANTSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

 Test Project in MarushkaDesign environment

 - 10 –

CREATE VIRTUAL TABLE W_HYDRANTSPATINDEX USING

rtree(id,xmin,xmax,ymin,ymax);

Connection Termination

CREATE TABLE "W_TCUSTOM" ("id" INTEGER PRIMARY KEY NOT NULL , "geom" BLOB

, "xmin" FLOAT NOT NULL , "ymin" FLOAT NOT NULL , "xmax" FLOATNOT NULL ,

"ymax" FLOAT NOT NULL, "rc" VARCHAR(255), `name` text, `surname` text,

`city` text, `userdraw` INTEGER);

CREATE TRIGGER [INSERT_ITEM_W_TCUSTOM]

AFTER INSERT

ON [W_TCUSTOM]

FOR EACH ROW

BEGIN

 INSERT INTO W_TCUSTOMSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE TRIGGER [DELETE_ITEM_W_TCUSTOM]

AFTER DELETE

ON [W_TCUSTOM]

FOR EACH ROW

BEGIN

delete from W_TCUSTOMSPATINDEX where old.id=W_TCUSTOMSPATINDEX.id;

END;

CREATE TRIGGER [UPDATE_ITEM_W_TCUSTOM]

AFTER UPDATE OF [geom], [xmin], [ymin], [xmax], [ymax]

ON [W_TCUSTOM]

FOR EACH ROW

BEGIN

 delete from W_TCUSTOMSPATINDEX where old.id=W_TCUSTOMSPATINDEX.id;

 INSERT INTO W_TCUSTOMSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE VIRTUAL TABLE W_TCUSTOMSPATINDEX USING

rtree(id,xmin,xmax,ymin,ymax);

Connection Closure

CREATE TABLE "W_CLOSURE" ("id" INTEGER PRIMARY KEY NOT NULL , "geom" BLOB

, "xmin" FLOAT NOT NULL , "ymin" FLOAT NOT NULL , "xmax" FLOATNOT NULL ,

"ymax" FLOAT NOT NULL, "rc" VARCHAR(255));

CREATE TRIGGER [INSERT_ITEM_W_CLOSURE]

AFTER INSERT

ON [W_CLOSURE]

FOR EACH ROW

BEGIN

 INSERT INTO W_CLOSURESPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE TRIGGER [DELETE_ITEM_W_CLOSURE]

 Test Project in MarushkaDesign environment

 - 11 –

AFTER DELETE

ON [W_CLOSURE]

FOR EACH ROW

BEGIN

delete from W_CLOSURESPATINDEX where old.id=W_CLOSURESPATINDEX.id;

END;

CREATE TRIGGER [UPDATE_ITEM_W_CLOSURE]

AFTER UPDATE OF [geom], [xmin], [ymin], [xmax], [ymax]

ON [W_CLOSURE]

FOR EACH ROW

BEGIN

 delete from W_CLOSURESPATINDEX where old.id=W_CLOSURESPATINDEX.id;

 INSERT INTO W_CLOSURESPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE VIRTUAL TABLE W_CLOSURESPATINDEX USING

rtree(id,xmin,xmax,ymin,ymax);

Fictitious Node

CREATE TABLE "W_NODE" ("id" INTEGER PRIMARY KEY NOT NULL , "geom" BLOB ,

"xmin" FLOAT NOT NULL , "ymin" FLOAT NOT NULL , "xmax" FLOATNOT NULL ,

"ymax" FLOAT NOT NULL, "rc" VARCHAR(255));

CREATE TRIGGER [INSERT_ITEM_W_NODE]

AFTER INSERT

ON [W_NODE]

FOR EACH ROW

BEGIN

 INSERT INTO W_NODESPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE TRIGGER [DELETE_ITEM_W_NODE]

AFTER DELETE

ON [W_NODE]

FOR EACH ROW

BEGIN

delete from W_NODESPATINDEX where old.id=W_NODESPATINDEX.id;

END;

CREATE TRIGGER [UPDATE_ITEM_W_NODE]

AFTER UPDATE OF [geom], [xmin], [ymin], [xmax], [ymax]

ON [W_NODE]

FOR EACH ROW

BEGIN

 delete from W_NODESPATINDEX where old.id=W_NODESPATINDEX.id;

 INSERT INTO W_NODESPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE VIRTUAL TABLE W_NODESPATINDEX USING rtree(id,xmin,xmax,ymin,ymax);

 Test Project in MarushkaDesign environment

 - 12 –

Pipeline

CREATE TABLE [W_PIPING] (

 [id] INTEGER NOT NULL PRIMARY KEY,

 [geom] BLOB,

 [xmin] FLOAT NOT NULL,

 [ymin] FLOAT NOT NULL,

 [xmax] FLOAT NOT NULL,

 [ymax] FLOAT NOT NULL,

 [rc] VARCHAR(255),

 [Datum_vystavby] DATE,

 [dim_prip] INTEGER,

 [zakazka] integer,

 [userdraw] INTEGER);

CREATE TRIGGER [INSERT_ITEM_W_PIPING]

AFTER INSERT

ON [W_PIPING]

FOR EACH ROW

BEGIN

 INSERT INTO W_PIPINGSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE TRIGGER [DELETE_ITEM_W_PIPING]

AFTER DELETE

ON [W_PIPING]

FOR EACH ROW

BEGIN

delete from W_PIPINGSPATINDEX where old.id=W_PIPINGSPATINDEX.id;

END;

CREATE TRIGGER [UPDATE_ITEM_W_PIPING]

AFTER UPDATE OF [geom], [xmin], [ymin], [xmax], [ymax]

ON [W_PIPING]

FOR EACH ROW

BEGIN

 delete from W_PIPINGSPATINDEX where old.id=W_PIPINGSPATINDEX.id;

 INSERT INTO W_PIPINGSPATINDEX

(id,xmin,xmax,ymin,ymax)VALUES(new.rowid,new.xmin,new.xmax,new.ymin,new.yma

x);

END;

CREATE VIRTUAL TABLE W_PIPINGSPATINDEX USING rtree(id,xmin,xmax,ymin,ymax);

3.2.2 Table of Documents

CREATE TABLE "demo_doc" ("ID" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

BLOB_TYPE VARCHAR(50),LABEL TEXT,BIRTH_DATE DATETIME,DOC

BLOB,ID_GRAPHICS_ELEMENT INTEGER, `STRING_ID` varchar(256));

CREATE TRIGGER demo_doc_insert_date AFTER INSERT ON demo_doc

BEGIN

UPDATE demo_doc SET BIRTH_DATE = DATETIME('NOW') WHERE rowid = new.rowid;

UPDATE demo_doc SET STRING_ID = 'ID'||new.rowid WHERE rowid = new.rowid;

After successfully creating all the tables you are ready to move on to the next step, which is an
actual import of data in the data store.

 Test Project in MarushkaDesign environment

 - 13 –

4 Teaching Marushka to read and write

To be able to read from the database data store, the user need to write data from source ESRI
shape files into the database.

In our new project you can see only blank MarushkaDesign environment at the moment, which
may look like this (depending on individual user configuration, how he organizes dialog boxes – you
can read more about control and work in MarushkaDesign environment in the manual):

4.1 Connecting data sources

 Connect the first data source, data from ESRI shape files (context menu will appear after
right mouse click on the Data sources):

 A dialog box appears, allowing selecting individual shape files. You can join them
individually or collectively using standard multiselect keys (CTRL or SHIFT + left mouse
button):

 Test Project in MarushkaDesign environment

 - 14 –

 After you click on OK, the Data sources dialogue box will change, a new item ESRI
shape with five nodes will appear:

 Now we need to write the data into database data store. Therefore connect the already
created SQLite database. Again using context menu of Data sources add a new data
source, this time Database – SQLite (WKB). Insert the name of your database and path
to it into the field value:

 After confirming with OK, the dialog box for entering the source cartographic projection
will appear. As a source coordinate system choose S-JTSK in units of millimeters. Keep
projection without changes: EPSG: 102067:

 Test Project in MarushkaDesign environment

 - 15 –

Click OK to confirm and in Data sources you instantly see another change, a new branch
appeared – this time SQLite (WKB) again with five nodes.

4.2 Importing Data from ESRI Shape Files into SQLite

For the actual import into any other data store, it is necessary to have a relevant physical layer,
into which the source data will be directed. Physical layers are created in the target data store.

Switch to the window Physical Layers and in data source SQLite (WKB) successively create all
five physical layers that you need. To invoke the context menu for creating new physical layers, right
mouse click on the data source:

In the dialog box for the layer name enter the name of the first physical layer (the name of the
database table into which the data will be directed). Repeat this procedure five times, for each
database table separately. The list of physical layers should now look like this:

 Test Project in MarushkaDesign environment

 - 16 –

You can now direct these data into the newly created layers. Given that the data in ESRI shape
files also contain attributes that you want to use, it is necessary to ensure, that these attributes get into
the data store. To all the form layers from data store ESRI shape is needed to supplement the
attributes into the properties of each layer. All the layers will require attribute rc, which can be filled in
the properties in bulk:

You still need other attributes from two form layers (w_hydrant_pnt and w_tcustom_pnt). Perform
these changes separately for each form layer. In the form layer w_hydrant_pnt you need an attribute
angle. Adding is done in the properties dialog box for a particular layer – DBColumnsToClient. Drag
the desired attribute by pressing F5 key:

 Test Project in MarushkaDesign environment

 - 17 –

In a similar manner complete attributes name, surname and city for form layer w_tcustom_pnt
layer.

You can finally enter the data adjusted like this into database data store. You can invoke the
context menu for individual layers of ESRI data store by right-clicking on it:

Then confirm the option Save to DataBase. In the consequently opened dialog box, select
corresponding physical layer of the database data store:

 Test Project in MarushkaDesign environment

 - 18 –

After confirming with OK, you got asked, if you want to keep the original ID. Given that the
elements in ESRI shape files do not come from database, you have to click on "No". After this, the
import into the database will proceed; you can monitor its status in the MarushkaDesign status bar:

Apply the same procedure for all the remaining form layers from ESRI shape data store and so
enter all these layers into database data store SQLite (WKB). Repeat the same procedures for layers:
w_piping_lin, w_tcustom_pnt, w_closure_pnt and w_node_pnt. So that’s how we taught Marushka to
"write into the database".

4.3 Displaying Data in MarushkaDesign from Database Data Store

In database data store SQLite you now have the data prepared for further use. We didn’t take
over graphical attributes from ESRI shape file source, so you will learn to change graphical symbology
of data and you will teach Marushka to draw the way you like it. You will leave definitively ESRI data
source at this moment and you will continue to work only with SQLite data source. From now on you
will work primarily with following controls.

 Form layer context menu – Data – Load all, or Load view rectangle (allows us to retrieve
the data layer after formal changes that we have made in the project):

 Clear all icon from tools panel Load data (removes from the drawing all physical layers –
data that were loaded – it is necessary to activate this icon after each adjustment of form
layer before downloading the new data, otherwise the map window won’t display any
change – only the elements which are not part of the drawing will be displayed in the map
window):

 Icon Fit all from map window menu is used for displaying all the elements in the available
physical layers at the moment in the main map window:

 Test Project in MarushkaDesign environment

 - 19 –

4.3.1 Displaying of Line Elements

You will master the pair of commands Clear all, Load all or Load view rectangle soon and you will
use them almost intuitively after every change in the form layer and for testing the functionality of new
changes. Try this with an example. Clear all and Load all the data from the form layer W_PIPING. As a
result, you see all the elements of the route in a grey design that you may not like. Instead, you want
to see water distribution network in blue color, the thickness of two. So change the symbology in the
form layer properties of W_PIPING Symbology of displayed layer:

You can see immediately the results of this change using the already well-known combination of
two commands Clear all and Load all from the context menu of form layer W_PIPING.

You have already done quite a lot of work on the project, so it would be appropriate to
commemorate the interim project saving. It is advisable to get used to it and use e.g. keyboard
shortcut CTRL + S for interim saving the project. The automatic save occurs only when running a local
WEB server, which you will find out more about later.

You have been shown how easily is to change symbology of linear objects. As regards to the cell
symbology, it is not that simple. The base is formed by an attached cell library. You will use its
components to display individual elements. Open the Cell library (from menu Tools - Libraries - Cells).

The dialog box in which you can import the cell library from Cells_EN.xml file displays. This file is

included with this tutorial. Invoke the context menu by right mouse click and in dialog box for file
selection choose the file from the tutorial folder

(c:\MarushkaExamples\Tutorial\Files\Cells.xml).

 Test Project in MarushkaDesign environment

 - 20 –

With attached cell library can be displayed the required cells. Since the ESRI shape files are
unfamiliar with element type cell, at this moment all the elements in the database data store are point
type. These points will be now displayed as a specific cells. Now let’s have a look at form layer
properties, specifically property DBColumnsToClient. This is a feature, where the values from the
database entity are also being loaded from specific database table columns. In addition, in
MarushkaDesign environment are defined pseudo columns, which you will now utilize. You can read

more about pseudo columns SET_PARS_ in MarushkaDesign manual. For displaying the cells from a

point object, you will use pseudo column SET_PARS_POINT_FROM_CORG. This point will be used as a

reference point for corresponding cell. Writing of this column can be performed manually or by
selecting pseudo column, which is a part of this dialog box. The value in this pseudo column will be '0
0 7'. It is also necessary to define the name of the cell that will be used for elements from this

database. Use the second pseudo column, this time SET_PARS_CELLNAME and into its value write in

the name of the specific cell from our cell library. For W_HYDRANT will transcript of these two pseudo
columns look like this:

 Test Project in MarushkaDesign environment

 - 21 –

Individual exercise:

For displaying hydrant was used cell W_HYDR from cell library, having in its Cellname property

value '1'. This value is the control value for the database resolution of cell names. You will now repeat
the procedure independently and without detailed instructions for all the remaining form layers. To the
form layer W_TCUSTOM assign cell W_TCUS, to layer W_CLOSURE cell W_CLOS and to layer
W_NODE cell W_NODE.

The user can instantly verify correctness of this exercise by downloading data to MarushkaDesign
map window. Perform Clear all and then load the data from individual form layers. Successively load
form layers W_HYDRANT, W_PIPELINE, W_TCUSTOM, W_CLOSURE and W_NODE and you can
see a result of your efforts in e.g. this form (cut-out is from the top left side of the map window):

In the picture you can see all the elements of water distribution network – route pipelines,
connections, fictitious nodes, closures, hydrants and connection terminations.

 Test Project in MarushkaDesign environment

 - 22 –

5 Displaying Data in Local WEB Server

Our map composition is at the moment, although still somewhat static, and not yet completely
according to our ideas, but nevertheless it is worth it to show how the result can be displayed in the
local WEB server. The environment created like this can be transferred to any Marushka server and
so will look the resulting map publication in web browser.

5.1 The Creation of Publish Layer

The first step to view your data in a web environment is creation of publish layer. Open the
window of publish layers (if you already don’t have) from tools panel Layers and map mapsurfaces. To
create new publish layer invoke the context menu on the Layers item and select and choose Add new
publish layer. For simplicity name the layer Water network:

Publish layer is a layer that will be displayed in a web publication and may contain one or more
form layers. For each layer you can define its scale range, allowing you within one publish layer to
display different data at different scales (it is unnecessary to display e.g. fictitious cell nodes in scales
lower than 1: 1 000 etc.). Move all the form layers from database data store SQLite progressively (or
by using multiselect) to publish layer Water network. Therefore it will ensure, that all the elements from
this category will be in one publish layer Water network. The result will look like this:

To see the result right after the local web server start, you have to change the property
DefaultChecked of Publish layer Water network from value false to true. This will ensure that after start
of a local web server, this layer will be displayed:

 Test Project in MarushkaDesign environment

 - 23 –

The project can be saved (but this time it will be saved automatically), and finally run a local WEB
server from tools panel Layers and map surfaces:

After waiting a while in original position of the map window appears a tab to the window's internal
local web browser in a position of cut-out of the original map window:

The map composition is at the moment still quite austere and static, but at this point you can see
our data in the form in which they can appear anywhere on the web, if you have properly configured
web server. But configuring Web servers is just another chapter which is beyond this tutorial. Now let’s
continue to focus exclusively on working in the local web environment. You can see our publish layer
in tab layers, where it can be turned on or off. This is currently the only one functionality of our created
project.

 Test Project in MarushkaDesign environment

 - 24 –

6 Changing the Symbology of Displayed Data -
Completion

Now imagine the situation when someone comes and tells that he dislikes cells of closures,
which confuses the WEB publication and he wants to have orange cell connections and light blue
connection terminations. Even before moving on to dealing with these requirements, you could have
noticed hydrant cells that you would like to see in an angle in which they were in the original data
store.

Before that you might like to change the angle of rotation of hydrants. In database is stored
information about the angle in column angle. We will use this information and we will use the
information stored in it by adding it to the pseudo columns of form layer W_HYDRANT. But the native
angular units are radians, so the type conversion is necessary. The conversion is saying that the value
stored in the columns is an angle in degrees. String stored in the properties of W_HYDRANT layer in

DBColumnsToClient will look like this: “'0 0 7' SET_PARS_POINT_FROM_CORG, '1'

SET_PARS_CELLNAME, '(DEG)'||angle SET_PARS_ROTANGLE.“ You can immediately see the

change by downloading new data.

Try other changes in order of complexity. Let’s start with removing cell closures. You will achieve
this by removing (right mouse button) layer W_CLOSURE in publish layer Water network. From now
on this layer will not display in the Local WEB server.

Recoloring the connection termination is also an easy step and you will again use pseudo

columns with which Marushka can work, this time it will be SET_PARS_REPLACE_COLOR that replaces

one color with another. To form layer properties DBColumnsToClient of W_TCUSTOM layer add a

string: 'C 255 0 0 255 255 0 128 192' SET_PARS_REPLACE_COLOR, which will ensure

replacement of original blue color for the new light blue.

The last requirement was to recolor connections to orange color. Connection lines and
connections are located in the same form layer, but you can use the database attribute RC and display
those two groups (lines and connections) separately. First clone the form layer (context menu, right
click the layer W_PIPING – Form Layer – Clone). The result will be a new form layer with attribute

SymbName=copy. For better orientation, change SymbName of new layer to "Customer" and in the

original layer W_PIPING enter into SymbName property "Pipeline". In both layers you have to define
database condition, so that you show only the data for the pipelines in one layer and data for

connections in the second layer. In clone for lines fill in the DBWhereClause property with "rc=Water

pipeline'". In clone for connection fill in the same property like this: "rc = 'Customer’s

connection.'" Now you can change the symbology of this form layer clone according to the defined

requirements.

 Test Project in MarushkaDesign environment

 - 25 –

6.1 Debug Console

In the previous step were used database conditions. To verify the correctness of database
commands can be used Debug console, which allows "capturing" all the commands that run in the
MarushkaDesign background. It can be found in the Tools menu – Debug console. Its base is a dialog
box in which you can continuously display the results of individual queries. Turning on debug console
is recommended only at the stage of query testing; otherwise it unnecessarily reduces performance
and speed of MarushkaDesign. Turning on this function is showed in the picture below.

As a result, you can capture e.g. database select, the correctness of which you can then try in
SQL manager, and thus you can reveal type errors like typos. Debug console can therefore be an
appropriate helper when any problem with displaying data from different (not only database) data
stores occurs.

6.2 Last Modifications in the Basic Display of Data

The last piece, still missing in the publication of our project is displaying the map which could
clarify the course of water distribution network. For this purpose use the publicly available and free
wms service of the Czech Office for Surveying, Mapping and Cadaster. Join it to the project as a
partial prepared subproject.

In the data sources in the context menu choose the Project – Add and from folder

C:\MarushkaExamples\Tutorial\Files \ choose file NewWMS.xml. You can use the guide to

show an overview of data sources, form and publish layers that are available in this project. In your
case do not make any changes; but in other cases you can choose which part of the subproject you
want to use in your main project. After successfully importing into the project, a new WMS data source
with one form layer will be added. This layer contains all the sub-layers necessary to display the
cadastral map. Also in the publish layers is added one new publish layer, in properties of which is set
DefaultChecked to true so that cadastral map display at startup of WEB server.

Drag the form layer WMS KN - CUZK from WMS to category Vicinity in publish layers. At this
moment the data provided by the WMS service will be displayed also in the small overview appearing
in the left upper corner of the WEB server. You can look at the result of your efforts again in the local
WEB server. If you followed the instructions properly, you should probably get a result similar to the
situation in the next picture:

 Test Project in MarushkaDesign environment

 - 26 –

Surprisingly you found out, that our water distribution network disappeared. What is the cause of
that? The only one visible item in the picture is a hydrant cell and even that is only a random
phenomenon. In MarushkaDesign is defined also an order of layers in which they will be rendered.
You haven’t changed this value, so all the layers have this value set to "0" (in the form layer
properties, it is an attribute LoadOrder) and all our layers are rendered over each other in a random
order. Now you have to adjust this value to correctly displaying the data. In our case it will be the

sufficient solution to set for all the layers from data source SQLite value of LoadOrder=1. In more

complex map projects is available a Map composition explorer in Tools menu, that allows transparent
administration of the order of the displayed layers.

 Test Project in MarushkaDesign environment

 - 27 –

After this change launch the local WEB server again:

The outcome of our efforts in now clearly visible and you can see our water supply network,
except for one small thing. In WEB server publication you do not see the connecting lines of
connections. How did that happen? When cloning a form layers, the clone did not automatically add it
also into publish layers and so a new form layer cannot be displayed. Therefore return to the project

 Test Project in MarushkaDesign environment

 - 28 –

and from the list of form layers "drag" layer W_PIPING Customer into Publish layer Water network.
Another restart of the local WEB server gives you finally the data in the form in which you might have
wanted it to see:

By live testing of the functionality of the project were revealed some shortcomings and mistakes
which were committed in the configuration of the project and you can see that the auxiliary map
window and the window of local WEB server are in our work indispensable helpers. At this point you
have explored the basic functions of Marushka for simple displaying your vector data in combination
with raster basis from WMS source. The possibilities are practically unlimited – you can have any
number of publish layers, supported formats, which you can use in your publication. For a
performance of basic functions, it is sufficient at the moment and now you can start to teach Marushka
more advanced activities.

 Test Project in MarushkaDesign environment

 - 29 –

7 Interactive Marushka

Until now you have worked with a somewhat static map – you were just displaying our data. At
this moment you could still have the feeling that Marushka displays only picture of our water supply
network. You will try to change this feeling now. You will teach Marushka to display also database
information that is not a direct part of the graphical presentation of data and is stored in the database
for each element. The basic carrier category of database information consists of information queries.

Let’s begin with a linear route object information query. Let’s display the following information
about the element: ID (database element identifier), rc (closer description specifying the element),
date_of_building (date type attribute – not filled for elements – only for demonstration work with date),
dim_cust (pipeline dimension – you will fill in the values later), commission (order number – only for
our testing).

7.1 Creating First Information Query

Open the query library (from menu Tools – Libraries – Queries). Each generated query is bound
to a specific data source, so create a new information query in the data source SQLite:

You can give the query any name you want. Into the property QueryName of this query enter e.g.
"Piping" – this name of the query will be visible even in the web publication. Into property LayerName
enter the name of the physical layer, in which will be the query feasible (in our case database table
W_PIPING). For database data sources, you must be careful that the value contained in this field does
not have to match with the name of form layer (particularly when using database views that combine
several database tables together). The final perquisite for the proper functioning of our first information
query is SqlStmtTemplate property, into which you type the actual database select, which will return

specific information to a given element. In our case the select will look like this: SELECT ID "ID",
rc "Description", date_of_building "Date of building", dim_cust "Dimension

of pipeline", commission "Number of commission" FROM W_PIPING WHERE

ID=~(long)ID~

This simple select will return values defined in the columns, using the tilde syntax, which appears
in the where clause and it interconnects condition with element that was selected in the graphic. Type
casting (long) is used for security reasons as prevention against possible "outside attacks" in the form
of so-called SQL injection.

You can test the functionality of a particular query by clicking the icon for testing queries
(highlighted in the picture). In the right part of the picture you can see a part of the dialog box that you
have just changed.

 Test Project in MarushkaDesign environment

 - 30 –

Now let’s try your first information query also in the local WEB server. In the local WEB server
switch into Info mode by the button at the bottom of the server window and by clicking the left mouse
button on any element of the route activate the "preselect" function, which will highlight the closest
element to the path. By right click you can switch to other elements. While the Preselect function is
active, next to the highlighted picture occurs an Info icon. Its content can vary and instead of it any
raster picture may be displayed. But in this tutorial we do not need to bother with such a detail. After
clicking on information icon will in the right side of the local WEB server appear result of an information
query, which is linked with a highlighted element. In case one of the physical layers is defined by
multiple queries, after first click on the information icon it will display the content, from which you select
the required query.

 Test Project in MarushkaDesign environment

 - 31 –

To display the text that appears in the information icon (instead of the standard text "i") you may
display different text. Do it using another pseudo column, the value of which is defined in the
corresponding form layer. Into DBColumnsToClient property of layer W_PIPING Pipeline and

W_PIPING Customer enter a string: 'ID: '||id SET_INFO_ICON_TEXT. That will ensure that

instead of description W_PIPING, will be displayed ID of the corresponding element in the floating
help.

7.2 Information Query at a Cell

Let’s use a bit different approach for non-linear elements. Create an information query for
connection terminations. Let's start again by creating an information query using the same procedure,
you chose in the previous case. The result will be the query Customer with the following properties:

In this example we will have a look at options of displaying the information query results. You can

choose to keep the attribute in the query properties ViewStyle=InPanel (the result will be displayed

on the information tab to the right of the WEB server window), InPopUpBubble (the result will be
displayed in a bubble above the corresponding element) or InNewWindow (the result will be displayed
in a new browser window). In our case we chose the middle option InPopUpBubble and the
information query result will be displayed in "pop-up bubble" above the element.

In addition change the text displayed in the icon using the well-known pseudo column
SET_INFO_ICON_TEXT. In the information icon should be displayed the name and surname of the
customer. Do this by concatenating of two columns and the definition of the pseudo column will look

like: ifnull(name,'')||' '||ifnull(surname,'') SET_INFO_ICON_TEXT. The function

"ifnull" is in this case in the database environment almost a necessity, because the chain cannot

 Test Project in MarushkaDesign environment

 - 32 –

handle empty values. Further you can almost in the same way add the pseudo column
SET_INFO_ICON_LABEL, which displays the floating help above the corresponding element. The last
important pseudo column suitable for cells is SET_INFO_ICON_COVER. This pseudo column
displays transparent icons above the vector icon and thus can create an active element from a cell. In
the property DBColumnsToClient in form layer W_TCUSTOM enter the following string (the order of

columns doesn’t matter): 'true' SET_INFO_ICON_COVER, 'Customer: '||

ifnull(name,'')||' '||ifnull(surname,'') SET_INFO_ICON_LABEL,

ifnull(name,'')||' '||ifnull(surname,'') SET_INFO_ICON_TEXT, '0 0 7'

SET_PARS_POINT_FROM_CORG, '2' SET_PARS_CELLNAME, 'C 255 0 0 255 255 0 128

192' SET_PARS_REPLACE_COLOR.

Given that the value 'true' in pseudo column SET_INFO_ICON_COVER display information icons
(although invisible), so you will display them. Displaying information icons is the property of the form
layer. So stay in the properties of the layer W_TCUSTOM and set property GenerateInfo to true. In the
publish layer properties change the property DefaultCheckedInfo to true, so that these information
icons display just after starting the local WEB server. The result can be seen in the local web server by
the left mouse click on connection termination, which will display the following information:

 Test Project in MarushkaDesign environment

 - 33 –

8 Marushka Adjusting the Data

You taught Marushka to display graphical data, database information to graphical data, and now
you will teach her to edit database data. Let’s create a pair of editing queries. In the first case, it will be
a simple text editing of customer data.

8.1 Customer Editing

In the query library using the context menu on the data source SQLite create a new query Update
type. Name it for example Edit customer. In LayerName property must be again given a physical layer
name (table) of data source – in our case it is W_TCUSTOM. Leave other properties unchanged. Stop
at the pair of properties InitSqlStmtTemplate and UpdSqlStmtTemplate. The first of them is the select
of the columns, which you want to display in the edit query. Display and consequently edit these
attributes: Name, Surname and City. For this select are applied specific rules of notation. Columns that
will be subsequently edited by editing query must be named by number and this number must be in an
ascending order. The quantity of editable columns must match the number of parameters defined in
the edit query (property QueryParameters). Columns, that won’t have indexed numerical naming, will
be considered read-only columns and their values cannot be changed. Our select will look as follows:
SELECT id "ID", name "1", surname "2", city "3" from W_TCUSTOM where

id=~(long)ID~.

The second SQL query is a phrase for the update of database data. Individual data are updated
according to order of the parameter, which must be the same as order in the previous select. In this
case, it is again important type casting of the parameters as a protection against SQL injections. The

construction of our update will look like this: UPDATE W_TCUSTOM set name=~(string)1~,

surname=~(string)2~, city=~(string)3~ where id=~(long)ID~.

You must not forget these mentioned parameters, which you have yet to define in the
QueryParameters properties. Order of the parameters must match the order of columns (parameters)
defined in the relevant select. Their names will be displayed in editable boxes in a WEB publication.
Editing of parameters is intuitive in an opened dialog box and there is no need for long descriptions.
Adding a new parameter is performed by the first icon, editing the name of parameters by mouse
double click. Definition of parameters will in this case look like this:

 Test Project in MarushkaDesign environment

 - 34 –

In the WEB publication (in our local WEB server) you can see the result of your effort. At the
connection termination you have a possibility of two queries, which are sorted alphabetically. Also you
can see the floating help, which you created in the last information query. After activation of edit query
Edit customer, will in the right panel in the information tab appear the outcome of your created edit
query. In the appropriate fields, you retrieve information about the selected element, of which only the
ID cannot be edited. The other information can be edited and updated data can be stored in the
database.

8.2 Editing Connection (line)

On the route of connection will be demonstrated another option of editing queries. You will learn
to edit data using static code list and you will be shown how to work with date type data. You will get to
know how to use this query only for connections and not the pipelines, when all the elements of the
route are in the same physical layer.

Let’s start with creating another editing query as in the previous case. Name the query "Edit
Customer’s connection" and it will be connected to the physical layer W_PIPING. We want to edit Date
of building, Dimension of connection and Commission number. Moreover we will display the ID and rc

attributes. The resulting basic select for our editing query will have following form: SELECT id "ID",
rc "Description", date_of_building "1", dim_cust "2", commission "3" from

W_PIPING where id=~(long)ID~. Enter all the editable parameters directly into

QueryParameters, Date of building will be the DateTime type, Dimension of connection and
Commission number wil be Int type.

Return to the update phase and enter the following command here: UPDATE W_PIPING set
date_of_building=~(datetime)1~, dim_cust=~(int)2~, commission=~(int)3~

 Test Project in MarushkaDesign environment

 - 35 –

where id=~(long)ID~. In this example you can see that you used other data types then you have

used so far. The query prepared like this would be fully functional and editing would have been
successful. That, moreover, you can try out either by testing the query in Query library or in the local
WEB server. But in this moment, let’s finish the editing query.

8.2.1 Creating a Static Code List

We wanted to make our editing query work with static code list. In case of dimension you must
take into account, that it can have dimensions 0 (in case of unknown dimension), 32 or 40. Create an
auxiliary query that will work with our editing query. In the context menu choose a New query – List of
static values. For better orientation in the library of queries name this query e.g. Edit Customer’s
connection – List of static values. In the properties of the query enter the name of the physical layer to
which the query relates (W_PIPING), then define a list of static values (ListOfValues), which is filled
with values: 0, 32 and 40 (as a separator of individual values use ENTER key). Finally, we are
interested in property QueryLV – here fill the parent query ID, which you copy from Edit customer’s
connection query properties and the last is the order of the parameter in parent query (in our case it is
2, because the parameter for connection dimension is in the parent query second in the query
sequence. The resulting form of properties of static values would look like this (only ID in QueryLV will
vary depending on the parent query ID):

8.2.2 Limitations of the Editing Query to a Subset of Elements

The query is now displaying, according to our expectations (after trying it in the local WEB
server), but we still want to limit the query only to connections. Use the rc attribute, which further
specifies the element. Enter it into property DBColumnsToClient in form layer W_PIPING Customer,
so that you can continue working with it.

Go back to Query library to our query "Edit Customer’s connection". Into property AttributeName
enter the string: rc. Into property AttributeValue enter value "Customer's connection ". This condition
will ensure starting the query only for the physical layer, which will also satisfy the attribute condition.
The condition is not defined directly in the database environment, so it is necessary to use attribute,
with which the condition works and mention it also in the attributes of the downloaded layer.

8.2.3 Testing the Resulting Editing Query

If we worked properly, so the editing query won’t be at this moment available for the line routes
and will be available only for connections. The picture shows the result of our efforts. In the preview
you can see the possibility to edit the element with ID=327. ID is as well as the description
"Customer's connection " non-editable. You also see a new active element to the right of the date text
box. It is an icon of a calendar, by which user can select a particular date. In the Dimension of
Customer's connection we see the possibilities that we have defined as static values for this particular
query. Try to fill in this value for several connections (so that the values vary for different
connections). You will need this data in some other steps of this project. In the preview, there is not
visible the attribute Number of commission, which is not significant and it is a part of the project just for
testing different data types.

 Test Project in MarushkaDesign environment

 - 36 –

 Test Project in MarushkaDesign environment

 - 37 –

9 Teaching Marushka to Draw

After you taught Marushka to update the original data, it is now time to teach Marushka to draw
the new data. You will create the pair of drawing queries, by which you will be able to draw new data in
a web environment, which will be then entered into our SQLite database.

9.1 Creating Draw Query – Line Object

The basis for the drawing, the outcome of which will be then stored in the database, is again in
the Query library. You will use again the context menu in the query library on data source SQLite,
where you choose an option Draw by etalon. Name the query: Draw Customer's connection. In the
properties of the query change only two things. Basic select, allowing to set the attributes, which will
enter the database together with a new element (these can also be user-defined attributes, which will
be demonstrated in the second example). There is the attribute "userdraw" in some database tables,
which will provide the differentiation of elements that were created in a web environment. In the
corresponding select therefore set the value to 1 and we also fill in RC attribute that defines us it’s a

connection. The select will then look like this: SELECT '1' "userdraw", 'Customer's

connection' "rc". The second thing you need to add in the query is an etalon item, which will be

needed by the drawing query. Let’s create it right now.

9.2 Creating an Etalon Item

Etalon will in this case serve as a definition of symbology for a newly drawn element, including
the definition of the database into which the element should be saved. Open the Etalon library (from
menu Tools – Libraries – Etalon). In the context menu of the data source SQLite choose Add Etalon
item. In the property Description name it Customer's connection – line; TableName will in this case be
W_PIPING. We want to distinguish the connection depicted on the WEB server from the lines that are
already in the data store. Choose a suitable user symbology in property Symbology as in the picture
below:

Then we know that we want to draw the line element so into the property GeomType set
WKBLineString item.

Finally, we still have to define the parameters in this etalon item that will be used by our drawing
query. Define these attributes in the property ElmAttribs (see picture below):

 Test Project in MarushkaDesign environment

 - 38 –

The etalon item created like this can be written also into property EtalonItem of our drawing
query.

9.3 Testing Draw Query and a Weakness Identification

We can see the result of our drawing query in the local WEB server environment. It can be found
in the Draw card. After drawing the linear object and after clicking the Save icon we can see the result
straight away. If you followed the procedure correctly, you will find out, that there is no difference
between the connection that is already in the database and the connection you have just drawn – all
the connections are orange. This is caused because of all the connections are in one form layer that is
displayed in the user defined (orange) symbology.

9.3.1 Error Correction

To see the result we wanted, you will achieve by cloning the form layer W_PIPING Connections.
Name the clone W_PIPING Customer. Add this new layer also into publish layer Water network.
These two layers would at this moment return the same data, so we have to modify the condition to
achieve the desired result. The form layer W_PIPING Customer will have DBWhereClause looking like
this: rc='Customer's connection' and userdraw is null. We used attribute userdraw, which we found out
in the database about, that it is not filled in the elements which were created outside Marushka
environment. In the cloned layer W_PIPING Customer userdraw change DBWhereClause to:
rc='Customer's connection' and userdraw=1, so that we ensure, that in this layer will be displayed only
connections, that we draw in Marushka environment. Change the property Symbology so that this
clone has a desired sense. In this property, switch off using user symbology. After further testing in the
local WEB environment we will get the correct outcome and our connection will be displayed as it was
stored in a data store (in our case a red dashed line).

9.4 Creating Draw Query with Attributes

By the exactly same way create a drawing query for Connection termination. The only difference,
which is necessary to point out, is the type of the element in the Etalon item. Here choose the value
WKBPoint. Otherwise, the procedure is the same as the previous example.

After creating a pair of drawing query and etalon item we go on with what needs to be developed
and how is the new one drawing query different from the previous one.

9.4.1 Drawing query

The property SqlStmtTemplate will have included attributes, which user can fill in while
acquisitioning the record – database item so just gets its properties. In our case, the select will include
three attributes: Name, Surname and City, (all the string type). Therefore these must be defined in the
QueryParameters properties. Given that it’s a cell, we must also specify the Cellname. The resulting

select will look like this: SELECT '1' "userdraw", 'Connection termination' "rc",

 Test Project in MarushkaDesign environment

 - 39 –

~(string)1~ name, ~(string)2~ surname, ~(string)3~ city, 'W_TCUS2' CELLNAME.

 The attribute userdraw again distinguishes data created in Marushka environment.

9.4.2 Etalon Item

In etalon item we must define all the parameters –enter both those in a drawing query, as well as
those that will be filled in automatically when you insert the element into the database. In this case, the
parameter names are named after the columns in the corresponding table.

9.4.3 Form Layer

In the form layer clone this time we won’t modify the Symbology properties, instead in
DBColumnsToClient remove two pseudo columns: SET_PARS_CELLNAME and
SET_PARS_REPLACE_COLOR, because of this time we used the cell that is already displayed red in
the cell library and there is no need to display it differently. Parts of the condition in the
DBWhereClause property remains the same, as in the previous drawing query.

If you worked properly, the result of our efforts should look like this:

The picture shows orange database connections with light blue connection terminations – these
are the connections that already were in the database and red dashed connection with red connection
termination are the ones we entered into database in Marushka environment. And this was aim of this
chapter.

 Test Project in MarushkaDesign environment

 - 40 –

10 Cunning Marushka

The objective of this chapter is to teach you how Marushka can delete elements that we have
drawn ourselves before, from the database. We do not want to delete the data already stored in the
database and so the original data and the user data will be again accessed in two ways. Again use
attribute: userdraw.

Primarily put this attribute into the DBColumnsToClient property in form layers, where you need
them. This means, you will adjust this property in form layers W_PIPING Customer userdraw and
W_TCUSTOM userdraw.

10.1 Creating a Query for Deleting the Element

The query for deleting of element is very simple. We will create the pair of queries – for deleting
the connection and connection termination that we have drawn. Both queries will look the same – they
differ only in the physical layer name (database tables). Therefore we will describe only one of the
queries, the other one you will create by yourself without a detailed description.

In the database source SQLite select New – Utility – Delete element in the Query library context
menu. Rename the query to: Delete Customer's connection. Enter the name of physical layer
W_PIPING into the LayerName property. The SqlStmtTemplate will contain a simple phrase for

deleting an actual element: DELETE FROM W_PIPING WHERE ID = ~(long)ID~. To achieve, that

deleting query is offered to us only when dealing with elements created in Marushka
environment, it is necessary to add another query properties AttributeName and AttributeValue.
Enter the text userdraw into AttributeName property and value 1 into AttributeValue property. The
corresponding attribute gains value 1 just in the case it was created in the Marushka environment. The
last property of this query we will change is ViewStyle. In this case it is considerably more efficient to
display question if we really want to delete the element into "bubble". We set the value ViewStyle to
InPopUpBubble. Similarly create the query for deleting connection termination. If you worked properly,
then while in the info mode in Local WEB server after hover the mouse cursor on the elements created
in Marushka environment will display a query for deleting an element. After selecting it, a dialog box
(bubble) will display with a question for confirmation to delete the element.

 Test Project in MarushkaDesign environment

 - 41 –

11 Marushka Seeks and Finds

Often the user needs to find an element based on any specific properties, resp. he needs to find
geographical coordinates. To locate using GPS coordinates Marushka has available predefined query,
in the Local WEB server window under GPS icon. There is no need to describe this query, but you can
try it out.

Now we will pay attention to creation of custom localization query. We will use the database
properties of the elements that are already in the data store, and we want to find a connection
belonging to a particular customer (by his name). We want the localization query uses the criteria from
the dynamic selection list. We will create a pair of queries – the main localization query and the
auxiliary list of values.

11.1 Creating a Localization Query

In the query library using context menu of SQLite data store we select New – Localize. Name the
query Localize customer. The customer information is stored in the W_PIPING table, which we type in
LayerName property. We may keep the QueryBuf property without changes. It depends on how we will
use this query. If we will search only by surname, it is recommended to increase the value and the
localization query will return more possibilities for the final localization. In the QueryParameters
property we create one record "surname" string type. The basic SqlStmtTemplate will have the
following form:

select xmin-5000 XMIN, ymin-5000 YMIN, xmax+5000 XMAX, ymax+5000 YMAX,

id ID, ifnull(name,'')||' '||ifnull(surname,'') LABEL FROM W_TCUSTOM

WHERE ifnull(name,'')||' '||ifnull(surname,'')=~(string)1~

We can see, that the result will be a connection termination in the map window cut-out, which is
defined by corners XMIN, YMIN, XMAX, YMAX – these coordinates are taken directly from the
selected database element and are adjusted so that the displayed cell doesn’t cover the whole map
window. In an attribute LABEL, which will be a description of corresponding element is combination of
name and surname of the customer, separated by a space (for better lucidity). Defining ifnull is
necessary for the cases when one of the fields (first name or surname) would be empty and in
database SQLite environment is this transcription required for the proper conduct select.

Next, change the outcome symbology of localization. In the property Symbology set a color
interpretation according to our own discretion. Predefined color is light blue with a light blue fill, so
even without manual intervention in the symbology should in most cases return a visible localization
result.

The last property which we will change is DynamicCodeList. By changing the value of this
property to true we turn on the Search suggestion. According to the entered characters, we will receive
an interactive menu with existing records defined in a dynamic list of values.

11.2 Creating a List of Values

In the query library using the context menu on SQLite database store choose New – List of
values. Rename the created query to: Localize Customer-List of values.

In the property LayerName enter the corresponding physical layer name (W_TCUSTOM), enter
the ID of parent query (QueryLV), which can be founded in properties of created localization query.
Localization of the customer and the order of the parameter in the parent query (QueryLVNUM). In our
case we have just one parameter, so we enter the value 1.

Enter the following phrase into SqlStmtTepmlate in the following form:

SELECT ifnull(name,'')||' '||ifnull(surname,'') FROM W_TCUSTOM WHERE

surname like '%~1~%'

The result of the select will be the list of values satisfying the defined condition. Such a definition
will achieve that in the list of values; will be offered items, where existing entry in the text field of
localization query will contain any part of the value in the column "surname". If we remove the "%"
symbol before the parameter, then the result shows only the surname, which started this string.

 Test Project in MarushkaDesign environment

 - 42 –

11.3 Testing Localization Query

In the local WEB environment we move on to Search Tab, where we can see a single localization
query that we just created. Select this localization query and it will display a dialog box for entering the
name (or surname) of customer, we want to find. At the moment, when we gradually enter the text, the
list of values satisfying the criterion will display as described above. An example of one such attempt
you can see in the following picture:

You can see that after entering the string "Ma" ten of possibilities appears. All these Customers
names contain the string "Ma" (regardless on the font size). After selecting the item, you really wanted
to find and after confirming by the Search button, you will finally get the result of localization:

 Test Project in MarushkaDesign environment

 - 43 –

The picture shows the connection that is centered and a limiting rectangle of the map window is
adjusted to a greater edge, which we have defined in select phrase of our localization query. In the
example was modified the result symbology, which is without filling to see the connection terminations.
After hovering the mouse on the information icon, detailed information about customer will appear.
Now we see that the result of our search is correct.

 Test Project in MarushkaDesign environment

 - 44 –

12 Marushka – The Documentarian

Marushka can work comprehensively with all the documents that are associated with single
database elements. Documents can be displayed, inserted or removed from the data store. In this
chapter, we will create a pair of document queries that will allow a complete document management.
The document query will apply to the connection termination – it includes any documentation
concerning the connections.

12.1 Creating a Binary Query

To work with the document itself, we have to create a binary query, through which we open the
document. This query is not yet linked with a graphic database table. In the query library using the
data store SQLite context menu choose New – Binary. Rename the created query to: Documentary of
Customer's connection - binary. In its properties we will edited only the database phrase select –
SqlStmtTemplate. It will have the following form:

select DOC DOCUMENT, BLOB_TYPE EXTENSION, BIRTH_DATE BIRTH_DATE FROM

demo_doc WHERE id=~(long)ID~

The SQL phrase includes a list of three required columns that are contained in our database table
that we have created in the introductory part of this project.

12.2 Creating a Query for Document Management

In the query library using the context menu of SQLite data store select New – Utility – File
Browser. For Clarity rename the created query to Documentary of Customer's connection. This query
will already be tied to the graphic database layer and SQL phrases defined in the properties will be
linked directly to the graphic elements, to which will be the documents associated with. In the
LayerName property enter the name of the physical layer for connection termination (W_TCUSTOM).
For better lucidity change the property ViewStyle to NewWindow. Keep other properties unchanged,
move to the last three properties – the SQL phrases allowing upload, view and delete document. Let's
start with a list of documents to the appropriate database element. The SqlDocListTemplate will look
like this:

SELECT id ID, BLOB_TYPE EXTENSION, LABEL LABEL, BIRTH_DATE BIRTH_DATE,

'-2147483637' BINARYQUERY FROM demo_doc WHERE

ID_GRAPHICS_ELEMENT=~(long)ID~

In this select we need to adjust the ID of binary query – put there a real query ID in
apostrophes that we created in the previous step.

Furthermore create a query that will allow us to insert the document, which creates a link to the
selected graphic element. The phrase in property will look like this:

INSERT INTO demo_doc (BLOB_TYPE,LABEL,DOC,ID_GRAPHICS_ELEMENT) VALUES

(~BLOB_TYPE~,~FILE_NAME~,~DOCUMENT~,~ELEMENTID~)

These parameters are mandatory in this phrase and indicate the type of the document, its title,

the document itself and the link to the graphic element.

The last step to create a documentation query for complete documentation file management is a
phrase used to delete the document. SqlDeleteDocumentTempate, which is the simplest one of these
three queries:

DELETE FROM demo_doc WHERE ID=~(long)ID~

In the previous steps we fulfilled all the requirements for functional documentation query and we
can directly test its functionality. In the local WEB server choose any connection termination cell, on
which we will test the query. From the queries available for this cell, we will select the item connection
documentation. Now a new window of document browser opens:

 Test Project in MarushkaDesign environment

 - 45 –

At this moment, the document list is empty. Now we can try the work with documents. Click on
Upload button. A row for a name and path of document appears. After clicking on Browse button a

dialog box for opening a file will appear. In the folder C:\MarushkaExamples\Tutorial\Files

find an image file "connection". Open this file and a in the text box will appear the text with path to

our file. After clicking on Upload button the database insert of relevant document will occur.

Dialog box with a list of files changes immediately and we will get the temporary information
about successful file upload.

The uploaded image can then be viewed by simply by clicking on a line with its name. The image
will open in a new Web browser window. The document can be also deleted by icon with a cross on
the right side of the dialog box with a list of documents. This will of course remove only the documents
in the database, not the files from the hard drive, where we uploaded the files from.

 Test Project in MarushkaDesign environment

 - 46 –

13 The Legend in Marushka

For better orientation in individual elements that are displayed in the map publication serves a
legend, which we have to create. The basic premise is the existence of raster cells, which will then be
displayed as individual legend items. In Marushka we have two kinds of a legend. The Static legend,
where each item will be displayed always when in the cut-out of the map window will be displayed at
least one element of the form layer, which is legend item related to. The second option is to create a
dynamic legend, which will only display the relevant items of the legend. This means that the legend
item is displayed only when in the window cut-out will occur at least one element meeting the criteria.

13.1 Preparation of Cell Libraries

Both variants of legend displaying have one thing in common. That is the necessity of raster cells,
which will serve as a single legend item. In this tutorial we have prepared small images, which will be
created from single cells. In the Cell library prepare cells for the static and also dynamic legend.

 In the cell library in the context menu of the database source SQLite open New cell – Raster –
New cell from image. In the dialog box for opening a file, select the first cell, which can be found in the
files of our tutorial (C:\MarushkaExamplex\Tutorial\Files\rb_hydrant.gif). Repeat the same procedure
for other raster cells for static legend (rc_tcust.gif, rb_tcust_u.gif, rb_node.gif, _0_0_255.png,
_255_0_0_cark.png and _255_128_0.png) and for three cells that will be used for creating dynamic
legend (_128_128_128.png, _255_0_0.png and _0_255_0.png). We will not demonstrate creating
such pictures in our tutorial, because it is not directly related to work in MarushkaDesign and these
images can be created in any graphic editor. After creating the last raster cell, our library cell should
look like this:

As a picture below shows, the newly created raster cells are not very neatly arranged, so in the
first phase do an adjustment in their arrangement. Change the property description at cells

 Test Project in MarushkaDesign environment

 - 47 –

_128_128_128.png, _255_0_0.png and _0_255_0.png, so that you get the string in the following form:
"Legend~Dynamic~original name". In the remaining newly created raster cells put into the description
property text: "Legend~Static~original name". After this modification will our dialog box with a library
cell look as following:

The organization of cells looks already more arranged, the tilde notation is an effective way how
to make order in the data. In the next step you may change the caption property, which is the text that
will appear next to the legend. At the bottom there are the image cells, by which the user can estimate
(for static legend), what particular cell was it created for. The items that pertain to the dynamic legend
will be discussed in the next section of this chapter, where we will try to understand their deeper
meaning. When you will edit the item by the order in which they appear in the picture above, enter to
the Caption properties gradually these descriptions:

Dynamic legend:

_0_255_0.png – Connection dimension 40

_128_128_128.png – Unspecified connection

_255_0_0.png – Connection dimension 32

Static legend:

_0_0_255.png – Route of pipeline

_255_0_0_cark_png – Route of water connection – drawn by user

_255_128_0.png – Route of water connection

 Test Project in MarushkaDesign environment

 - 48 –

rb_hydrant.gif – Hydrant

rb_tcustom.gif – Connection termination

rb_tcustom_u.gif – Connection termination – drawn by user

rb_node.gif – Fictitious node

In CellName property for simplification remove the file extension ".png" in all the cells. When you
look at the Legend tab in the cell library, you will see an empty dialog box. This is due to the fact that
in this tab, there are displayed only the cells that have in the CellType property entered: CaptionItem.
This property can be changed in bulk (through MultiSelect in the cell library). After this change you will
see in the legend tab the following status:

 Test Project in MarushkaDesign environment

 - 49 –

See from the diagram, that sorting of the legend may not suit us. Property classification of legend
is a property classification of the whole project. This feature can be found in the properties tab for the
Data source. The initial setup is sorted by the Caption parameter. It is not necessary to change this
property. You can sort the legend using drag and drop, according to your requirements. The first time
you try to drag a legend item, a dialog box will appear, informing that you are currently not allowed to
change the sorting of legend. If you confirm this by pressing yes, you can continue in manual sorting.
When manually sorting, it is possible to use the MultiSelect again (using CTRL or SHIF key and left
mouse button) and sort the entire group of cells. Let’s try to sort our legend this way:

In the top part are the items of the static legend with priority to display line objects. In the bottom
part we see the items of the dynamic legend, which will be explained in the next section of this
chapter.

 Test Project in MarushkaDesign environment

 - 50 –

13.2 Creating a Static Legend

In the first stage create a static legend. Let’s leave our Cell library and move on to the properties
of form layers, which are individual legend items bound to. In the form layer properties W_HYDRANT
find property LegendItems:

After clicking on the button with three dots, the dialog box with form layer editor pops up. Find an
item for hydrant and either by F5 key or by dragging the mouse in combination with the left mouse
button drag the item to the right part of the dialog box.

 Test Project in MarushkaDesign environment

 - 51 –

So we created this item for the corresponding form layer and this item will be displayed in the
local WEB server anytime, whenever the current cut out will contain at least one element belonging to
this layer. The whole procedure is applied successively to all our form layers (except for the layer
W_CLOSURE) and assigns each of them just one legend item. In general, one form layer can have an
unlimited number of legend entries. You can try out displaying of the created legend in the local WEB
server environment. If you will have all the legend items displayed in the map window, we will see a
complete legend. Otherwise you will see only a part of the legend:

 Test Project in MarushkaDesign environment

 - 52 –

13.3 Dynamic Legend and Thematization

Thematization is offered to be used directly in dynamic legends. By thematization is meant
displaying the map composition by other graphic symbology based on the properties of individual
graphic elements. In our case, we want to display different color connections, according to their
dimensions. For this thematization we will need a legend that will allow us to more easily "read"
different graphical views.

13.3.1 Thematization Creation

To create a new thematization we need a new formal layer. To do this, we will use existing form
layer "W_PIPING Customer " from which we will create a clone as we have already explained in a
previous chapters. Rename the SymbName property for newly created clone of form layer to
"Customer theme". In this clone we want to display both original database connections and
connections newly created in MarushkaDesign environment. So we modify the property
DBWhereClause from condition: rc=''Customer's connection' and userdraw is null" to rc="Customer's
connection".

To change the color presentation of database graphic elements we use pseudo columns in
property DBColumnsToClient in combination with slightly advanced database structure phrase, in
which we use conditional branching "case". The whole property will look like this:

rc,userdraw,date_of_building,dim_cust,commission,case when dim_cust=32

then '255 255 0 0' when dim_cust=40 then '255 0 255 0' else '255 128 128

128' end SET_PARS_RGBCOLOR.

To ensure that the thematized connections are displayed always above the database elements,
we must change the property of form layer LoadOrder to "2". This will ensure that the "recolored data"
are shown above the original database data symbolization.

Create a new publish layer named "Connections according dimensions", to which drag the newly
created clone of form layer.

If you worked honestly when passing through this tutorial and fulfilled the task in the chapter
Editing Query - Testing the Resulting Editing Query and really filled in a few lines, then you can test
the functionality of your thematization. Result in a local WEB server (after manually switching on the
new publish layer for thematization) will be a window with such colorfulness:

 Test Project in MarushkaDesign environment

 - 53 –

In the picture you can see red, green and gray connections, from which the line style of the
connections drawn in Marushka environment remains and these can be visually distinguished. But at
this moment, there is not available legend for thematized connections. So now it’s time to create it.

13.3.2 Creating Dynamic Legend

This step is already relatively simple and is analogous to recoloring connections using pseudo
column SET_PARS_RGBCOLOR. In this case use pseudo column SET_LEG_ITEM. Extend the
original property DBColumnsToClient to the following form:

rc,userdraw,date_of_building,dim_cust,commission,case when dim_cust=32

then '255 255 0 0' when dim_cust=40 then '255 0 255 0' else '255 128 128

128' end SET_PARS_RGBCOLOR, case when dim_cust=32 then '_255_0_0' when

dim_cust=40 then '_0_255_0' else '_128_128_128' end SET_LEG_ITEM

In the pseudo column SET_PARS_RGBCOLOR are individual parameters defined by ARGB
code of the corresponding colors. In the pseudo column SET_LEG_ITEM, it is a property of individual
cells which is defined as legend items. Therefore for the property CellName was used this code, which
can be read as a RGB code for the color and its writing is in compliance with this structure quite
intuitive. Once again, we will test the legend displaying in the local WEB server – again after manually
switching on publish layer Connections according dimensions:

 Test Project in MarushkaDesign environment

 - 54 –

During movement in the map window, you can verify that even when a form layer for thematized
connections is displayed, so the legend will be variable depending on which types of attributes we
have at the moment displayed in the map window.

 Test Project in MarushkaDesign environment

 - 55 –

14 Teaching Marushka to Sing and Dance

In this manual we have tried all the basic functionality for creating web map compositions in
MarushkaDesign environment. With Marushka, we went through her first steps, we have taught her to
read, write, draw and otherwise manipulate with data. You really won’t teach her how to sing and
dance, but it is up to you how you will work with the available data base and how much you will be
able to use the data. The possibilities are really wide and the entire document is only a guide to the
basic functions of Marushka. We didn’t show everything, the entire tutorial is a simplified overview of
the functionality of each component. Each project can be continuously developed and improved, if we
continue to think about the further expansion of each function. So we have successfully managed to
complete a fundamental work with MarushkaDesign.

The results of our efforts can be then sent to the official WEB server and we can publish our map
composition (either internally or publicly). But the principles of this publication goes far beyond the
scope of this tutorial, more about this issue can be found in the official manual, which is a part of
MarushkaDesign.

And where to go next? Marushka is still living and her possibilities are endless, so therefore in
conclusion a few more ideas about what we could in our test project yourself.

14.1 Suggestions for the Individual Exercises

 Individual adjustment of drawing query for drawing connections, while you are drawing
you can also add a dimension of connection.

 Let’s return to the cell closures, which we have omitted from the publication. Try to go
back to the fact that we want to highlight the closed closures. Modify the database table
W_CLOSURE by adding column STATE. You will be able to edit the column in the local
WEB server environment (creating editing query with static list of values). Then create a
simple thematization or form layer that will have a special graphic symbology for closed
closures. The result will display turned off closures.

 In cooperation with the official manual, you can create a set (a common query), which will
display with for example a list of customers in a particular city. In this case, you can only
outline the path along which you should proceed, because such a query is already quite
user demanding. Apart from the knowledge of database environment it requires also
knowledge of HTML code to display query correctly. In the query library create a New
query – New – Common info. In the property SqlStmtTemplate create a query, which will
return a required list (this query is not connected with any graphical element) and in
property ResultTemplate you would create a HTML template for displaying the result of
this query. HTML template can be used in other cases, when the result is displayed in a
new window.

At this moment we can congratulate ourselves that we have reached on the go with Marushka up
to this stage and we were able to create the whole project. More possibilities depend just on our own
imagination.

